

ULTRASOUND POWER METER MODEL UPM-DT-100SP

- PERFORMANCE TESTED BY FDA & NIST
- FIVE POINT CERTIFICATION (NIST TRACEABLE)
- RESOLUTION: 200mW (150 mW in grams mode)
- MEASUREMENT RANGE: 0 TO 30 WATTS
- FREQUENCY RANGE: .5 TO 10MHZ
- MEASURES TOTAL PULSED OR CONTINUOUS POWER
- AUTOMATIC ZEROING & STABILIZATION
- SELECTABLE READOUT IN WATTS OR GRAMS
- BATTERY OR LINE-POWERED
- DIGITAL DISPLAY & RS-232 INTERFACE

UPM-DT-100SP

Power Meter UPM-DT-100SP has a high contrast alphanumeric LCD display. Membrane "touch buttons" enable quick setup, automatic zero and selection of the power reading in watts or grams.

ACCURATE TESTING OF ULTRASOUND THERAPY EQUIPMENT

The Model UPM-DT-100SP Ultrasound Power Meter was developed to test therapeutic transducers according to AIUM, JCAHO, FDA, and NIST guidelines. OHMIC's ultrasound watt meters have been used worldwide since 1977 and are the most widely accepted standard for documenting the power output of medical transducers. The performance of the UPM-DT-Series has been tested and verified to be within the limits of tolerance established by the Food & Drug Administration (FDA) and National Institute of Standards & Technology (NIST). The compact and light weight Model UPM-DT-100SP meets all the requirements of a portable test instrument with the reliability and proven performance of the UPM-DT-Series. The Model UPM-DT-100SP uses the identical test tank and target configuration as the higher resolution UPM-DT-1 and UPM- DT-10.

Principle of Operation

The most reliable and repeatable means of measuring

ultrasound power is by the radiation force method. The transducer to be tested is centered above a 45° airbacked cone target in de-gassed water. The coupling is made to a precision balance capable of resolving \pm 0.15 watts. When acoustic energy is applied to the cone, the resultant force is directly proportional to the total radiated power. The test tank is lined with sonic absorbent rubber to prevent acoustic reflection. The balance is programmed to convert milligram magnitude forces direct to a readout in watts with good resolution. Measurement accuracy of the power meter can be verified by placing a calibrated weight on the cone's support arm. (The supplied 1 gram calibration weight equals 14.7 watts.)

Model UPM-DT-100SP weighs only eleven pounds and is simple to set up. On battery operation, the unit can be used "on-site" for approximately 20 hours.

WARRANTY: All products manufactured by OHMIC Instruments are warranted to be free of defects in material and workmanship for one year after delivery. Any equipment found to be defective within this period will be repaired or replaced free of charge.

SPECIFICATIONS: UPM-DT-100SP

← Approved Electronics

Measurement Range 0 to 30 Watts, 0.2 watts minimum detectable power

Resolution/Uncertainty ± 200 mW, ± .01 gram (150 mW)

Accuracy ± 3% @10 Watts, 25°C

Transducer Frequency .5 to 10 MHz

Maximum Transducer Diameter 4 1/2" Inches

Ultrasound Test Media Degassed Water
Integration Time 2.5 seconds

Data Output

Bi-Directional RS-232 600—19200 Baud

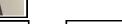
Line Power

120 VAC to 12 VAC 500 mA adapter with 6 Ft. cord

Battery

4-AA: battery life ± 20 hrs.; Battery Level Indicator

3-Digit LCD


Dimensions 8"H x 12"L x 8.75"W

Weight 11 lbs. Net

Display

Transducer Placement Details

Rear view: RS-232 and printer ports. CE approved (above)

The Importance of Calibrating Ultrasound Transducers

To insure effectiveness of treatment and to minimize patient risk, it is important to measure ultrasound power levels to determine exact patient exposure. The FDA requires that all diagnostic and therapeutic Doppler and ultrasound equipment be calibrated periodically.

Typical safe values are defined by the temporal average intensity at the point in the acoustic field where the intensity is at its maximum value, referred to as Spatial Peak Temporal Average (SPTA). The FDA and AIUM provide guidelines for the maximum SPTA values in

medical applications. Typical safe SPTA values are 10mW/cm² for echo sounding, 100mW/cm² for Doppler devices and 3W/cm² for therapeutic use. The watt density (watts/cm²) of a transducer is determined by measuring the total power output and dividing by the effective cross sectional area of the transducer.

A sample form to document and report ultrasound performance is included in the Model UPM-DT-100SP manual.

ENGINEERING SUPPORT: OHMIC Instruments designs and manufactures a full line of environmental and bio-medical sensors, instruments and controls. Many of our products are custom designed to meet specific requirements. Our engineers will be pleased to discuss your application.

深圳为尔康科技有限公司 联系人:曾祥满 手机:13632925349

QQ: 274798107 电话: 0755-28896837 地址: 深圳市龙岗区沙平北路111号608A

网址:www.medicalQC.com 邮箱:szchina1718@163.com